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INTRODUCTION

In modern theory the vacuum is more properly characterized as a
plenum than as a void. This is due to the fact that, even in the
absence of matter, the vacuum is the seat of zero-point-fluctuation
(ZPF) energy densities of such fieids as the vacuum electromagnetic
field, which is the focal point of our study here. The energy density
associated with this (usually unobserved) background is, formally,
considered to be infinite; with appropriate high-frequency cutoffs

the ZPF energy density is still conservatively estimated to be on the
order of nuclear energy densities or greater.

The enormity of the figures describing the vacuum electromagnetic
zero-point energy has led theorists to question from time to time
whether these numbers should be taken seriously, or whether they
are due to some defect or misinterpretation of the theory. However,
over the years, even though this energy density has not been
measured directly, certain physical consequences due to its presence
have been measured. One very physical exampie is the unique
zero-point quantum force between closely spaced metal plates
known as the Casimir force (Casimir (1), Fierz (2), Marshall

(3), Boyer (4)). The Casimir force results from the redistribution

of viable normal modes {and hence in the associated vacuum
electromagnetic ZPF energy) as the distance between the plates
changes. As a result of this and other similar prediction and
measurement, the reality of the zero-point energy is now accepled
as part of the lexicon of modern quantum theory, although there is
stilt discussion as to whether it ought 1o be considered as "real” or
"virtual” (Boyer et al (5)). Of particular significance with regard

to its lack of direct observability is the fact that its spectral
distribution,
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is Lorentz invariant, which derives specfically from the spectrum's
cubic dependence on frequency. The cubic spectrum is unique in its
property that delicate cancellation of Doppler shifts with velocity
boosts leaves the spectrum Lorentz-invariant.

Now yet further demonstration of the reality and significance of this
ubiquitous energy density has turned up in two studies by the
author, the first dealing with the microcosm of the atom (Puthoff
(6)), the second with the macrocosm of gravitationaf interaction
(Puthoff (7)). Specificaily, the first addresses and resolves the
issue of radiative collapse of the Bohr atom, while the second



pertains to the development of a model, originally proposed by
Sakharov, of gravity not as a separately-existing fundamenta! force,
but rather as an induced effect associated with the zero-point
fiuctuations of the vacuum, along the lines of the van der Waais and

Casimir forces.

We begin with a discussion of the Bohr model of the atom. When it
was first recognized that the atom could be likened to a smal! solar
system in which electron planets orbited a nuclear sun, theorists
were puzzled as to why the electrons in their tightly-curved orbits
did not radiate their energy away and spiral into the nucleus as
predicted by classical theory. At the time the best answer was that it
appeared to be a property of special quantum states, and no further
elaboration was possible. Now, however, this issue has been
re-examined, this time taking into account what has been learned in
the interim about the effects of zero-point energy. It is shown that
the electron in the ground state (lowest-energy state} of the
hydrogen atom indeed can be seen as continually radiating its energy
away as predicted by classical theory, but also absorbing energy
from the ever-present sea of electromagnetic zero-point energy in
which the atom is immersed, and an hypothesized equilibrium
between these two processes leads 1o the correct values for the
parameters known to define the ground-staie orbit.

To show this, we consider a conceptually-simple, classical model
{but including ZPF) in which the Bohr-atom electron interacts with
a background of random classical electromagnetic ZPF radiation with
energy spectrum given by (1). This treatment of quantum
field-particle interactions on the basis of a classical ZPF
background constitutes an analysis technique known in the
literature as stochastic electrodynamics (SED) (Boyer et al {8)).
SED is a well-defined framework that has a long history of success
in yielding precise quantitative agreement with full QED treatments
of such topics as the Planck blackbody radiation spectrum (Boyer
(9)), Casimir ((3), (4), Lifshitz (10)) and van der Waals forces
(Boyer {11)), and the thermal effects of acceleration through the
vacuum (Boyer (12)), all originally thought to be soiuble only

within the quantum formalism.

In the SED approach the vacuum is assumed 1o be filled with random
classical zero-point electromagnetic radiation whose Fourier
composition underlies the spectrum given in (1). Written as a sum
over plane waves, the random radiation, which is homogeneous,
isotropic and Lorentz invariant, can be expressed as
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where O = 1,2 denote orthogonal polarizations, € andk are
orthogonal unit vectors in the direction of the electric field
polarization and wave propagation vectors, respectively, 6(k,r)
are random phases distributed uniformly on the interval 0 - 2=
(independentiy distributed for each k,o), and w = kc.

We begin our discussion of the ground-state Bohr orbil by
considering a one-dimensional charged harmonic oscillator of
natural frequency ), . located at the origin and immersed in
zero-point radiation. For orientation along the x axis, the
(nonrelativistic) equation of motion for a particle of mass m and
charge e, including radiation damping, is given by

m¥ +marx = (- \¥ TP
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Substitution of (2) into (4) leads to the following expression for
the velocity, which is of interest:
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From (2) and (5) we now calculate the average power absorbed
from the zero-point background as
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where use of the complex conjugate and the notation (1/2)Re stems
from the use of exponential notation. Eq. (8) can, however, be
simplified to
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where averaging over random phases involves the use of
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We further note that, with the sum over polarizations given by
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the angular integration in k takes the form
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Substitution of (13) into (11), and a change of variables to
¢ = ke, then leads to
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Because of the smallness of T for a particle with the charge-to-mass
ratio of an electron, for this case the integrand in (14) is sharply
peaked around w =w,. Wecan therefore invoke the standard
resonance approximation, extending the limits of integration and
replacing «> by «J, in all but the difference term. This yields
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since the (Lorentzian lineshape) integral integrates to unity. In this
resull we thus have the final expression for the absorption of power
from the random background zero-point field by a one-dimensional
charged harmonic oscillator.



We now recognize that the Bohr-theory ground-state circular orbit
of radius r, constitutes a pair of one-dimensional harmonic

oscillators in a plane, oscillating in quadrature,
K =X, coew,t
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Therefore, the power absorbed from the background by the electron

in circular orbit is double that of (15}, or
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The power radiated by the electron in circular orbit with
acceleration A is given by the standard expression (Feynman et al

(13))

a.2 2 2 a1, 4%
(P = A - e (Told) - € oo

CIRC 6'Tff°C3 - 61160(:3 67T€OC3 . (18)

Under the hypothesis that the ZPF-determined ground-state orbit is
set by a balance between radiation emitted due to acceleration of the
electron, and radiation absorbed from the zero-point background,

we equate (17) and (18) to obtain

ma,r. =h. (19)

We have therefore, within the SED framework, and at the level of
Bohr theory, obtained the desired resuit for the ground state of the
hydrogen atom. Thus the ground-state orbit can be interpreted as set
by a dynamic equilibrium in which collapse of the state is prevented
by the presence of the zero-point energy. The significance of this
observation is that the very stability of matter itself depends upon

the underiying sea of electromagnetic zero-point energy density
universally present throughout space.

GRAVITY AS A ZPF FORCE OF THE LONG-RANGE VAN DER WAALS TYPE

With regard to gravity, although much is known about its
mathematical structure and its empirical effects, its fundamental
nature is still not well understood. Whether addressed simply in
terms of Newton's Law, or with the full rigor of general relativity,
gravitational theory is basically descriptive in nature, without
revealing the underlying dynamics for that description. As a result,
attempts to unify gravity with the other forces (electromagnetic,
strong and weak nuclear forces), or 10 develop a quantum theory of
gravity, have foundered again and again on difficulties that can be
traced back to a lack of understanding at a fundamental level. To




rectify these difficulties, theorists by and large have resorted to
ever-increasing levels of mathematical sophistication and
abstraction, as in the recent development of supergravity and
superstring theories.

Taking a completely different tack when addressing these difficuities
in the sixties, the well-known Russian physicist Andrei Sakharov
put forward the hypothesis that gravitation might not be a
fundamental interaction at all, but rather a secondary or residual
effect associated with other {non-gravitational) fields (Sakharov
(14), Misner et al (15)). Specifically, Sakharov suggested that
gravity could be understood as an induced effect brought about by
changes in the quantum fluctuation energy (zero-point energy) of
the vacuum due to the presence of matter. In this view the attractive
gravitational force is more akin 1o the induced van der Waals and
Casimir forces, than to the fundamental coulomb force. Although
speculative when first introduced by Sakharov in 1967, this
hypothesis has led to an ongoing literature on gravity as a
symmetry-breaking effect in quantum field theory which continues
to be of interest (Adler (16)).

This approach to gravity is addressed here in particularly concise
form, with positive results. We show that gravitational mass and its
associated gravitational effects emerge in a natural way from
electromagnetic ZPF-induced particle motion. In brief, the
gravitational interaction begins with the facl that a particle situated
in the sea of electromagnetic ZPF develops a "jitter" motion
(zitterbewegung). When two (or more} particles are in proximity,
they are each influenced not only by the fluctuating background
field, but also by the fields generated by the other particle(s),
similarly undergoing zitterbewegung motion. The fieid-correlated
motions of such particles then result in an inter-particle coupling
that leads straightforwardly to the attractive gravitational force,
with no free parameters lo be determined. Gravity can thus be
understood as a fluctuational force of the van der Waals type,
although of much longer range than typical van der Waals forces
because of involving the radiation rather than the (usual) induction

fields.

To arrive at these results, basically we simply assemble together in

a straightforward fashion previously-published results regarding

ZPF models of van der Waals and related effects. When this is done,
one finds the leading term in the interaction potential, previously
unexamined, 10 be Newton's Law with no free parameters 10 be fixed.
Because of its electromagnetic underpinning, gravitational theory in
this form constitutes an "already-unified” theory.

We begin our exploration of the Sakharov viewpoint on the basis of a
harmonic-osciliator model of the type used in the previous section.

In its application, we represent matter as a collection of bound,
charged point-mass particles (partons), in accordance with

standard theory. In the development that follows it is not necessary
to invoke the details of particular parton representations {(e.g.,
families of fractionally-charged quarks) beyond certain general



concepts, such as the "asymptotic freedom” of partons to respond to
the high frequency components of the ZPF spectrum as essentially

free particles.

The harmonic oscillator Eq. (4) can be written in the form

v + a s4e 3 ZP
B w 2=T% +e6MeECTE (20)

where we have introduced the dipole moment, p = Qr, and the
damping constant, I" = g/6r€mgcS.

For the parton - ZPF interaction of interest, we treat the parton as

a two-dimensional (rather than three-dimensional) oscillator,

drawing on previous studies that model spin as the "internal”

angular momentum asociated with two-dimensional fluctuation
motion (Huang (17)). Also, because we are interested primarily in
the particle's high-frequency fluctuation response to the ZPF,

whose spectral density increases as ) we neglect the binding-force
term involving &, (asymptotic freedom as it relates to the ZPF).
Finally, we also neglect the radiation-damping force in comparison

1o the inential force and ZPF driving terms.

Under the asymplotically-free-particle assumptions stated in the
paragraph above, the x component of (20) takes the form (with X a
unit vector in the x direction)
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To obtain the expectation value of kinetic energy of the fluctuation
motion, (€ =4mg(i2) 2 = (2> 121€c3T, we apply an
integration and averaging procedure due to Rueda (18). The result
is that {py2? reaches
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where (¢ is the assumed cutoff frequency, to be determined later.
For the two-dimensional fluctuation motion assumed, {p?) = 2 (Px2),
which yields for the kinetic energy

3
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It is thus seen that the expectation value of the kinetic energy of
parton fluctuation motion reaches a finite magnitude, limited by the
finite value of the (as-yet-undetermined) ZPF cutoff frequency
(Heitler (19)). Since the energy associated with this fluctuation
motion is an "internal” particle energy, that is, not directly



observable, we identify this energy as that corresponding to the
rest-mass energy of the particle, m,

_ Ley _ rf,wt (24)
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In this view the particle mass m is of dynamical origin, originating
in parton-motion response to the eleciromagnetic zero-point
fluctuations of the vacuum {footnote (20)). Itis therefore simply a
special case of the general proposition that the internal kinetic
energy of a system contributes to the effective mass of that system
(Bohm (21)). As will be shown, it is this mass that is involved in
the gravitational interaction.

Let us now turn our attention to the interaction between particies.
When two (or more) are in proximity, they are each influenced not
only by the fluctuating background field, but also by the fields
generated by the other particle(s), all similarly undergoing
fluctuation motion. For the case of interest here (binding and
radiation-damping forces neglected) Boyer has derived an
expression for the interaction potential U for the retarded van der
Waals forces at all distances between a pair of like particles,
interacting with the classical background ZPF as assumed here. it is

{Boyer (22))
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where U = -iw/c and R is the distance between particies. The only
difference here as compared to the derivation in Ref. 22 is the use of
a finite cutoff frequency. (For those who might be more familiar

with standard quantum calculations, this result has also been
obtained by Renne (Renne (23)) and by Casimir and Polder
(Casimir et al (24)) in QED calculations.)

We are now ready to apply this standard result to the gravitational
problem. First, on the scale of interest in gravitation {distances
large compared with the wavelengths of the predominant fluctuation
frequencies) we need retain only the radiation-field contribution to
the interaction potential, which is the first (unity) term in
brackets. This differentiates the results to be derived here from the
usual van der Waals effects involving the induction fields
(remaining terms in brackets). Second, for the two-dimensional
fluctuation motion assumed in our case (N = 2), geometrical
considerations require that the above expression for U, derived for
the case in which three degrees of freedom for particle motion were
assumed, be reduced by a factor (N/3)2 = 4/9 (Puthoff (7)).
With these factors taken into account the solution to (25) becomes
2
= - X [am R 26
u= - 2 [ = ] (26)



where X = fir 203/ and R =ty R/c. With the potential thus
defined, the force is obtained from F = - aU/oR.

We see therefore that the potential has the desired 1/R dependence
required for gravity, modulated by a fine-structure overlay of the
form (sin®/®)2 which has a spatial periodicity characteristic of the
cutoff (Planck) frequency {~10-33 cm). if we extract the leading
(non-oscillatory) term, we find for the potentiai and force
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A careful examination of the details of averaging over the rapid
spatial variation shows that the particie experiences an average
force {F? given by the leading term in (28) (see Appendix). With T
in terms of m given by (24), {F)can be written in the form

1t c.5 TY\Q (29)
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At this point we note that the assumption of a Planck-like value for
the cutoff frequency, 3¢ = ficSAG , would directly yield
Newton's Law. However, we can obtain this value for the cutoff from
fundamental principles, without assumption. We begin with the
observation that in an accelerated frame the spectral distribution

(1) takes the form (Boyer (25))
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where a is the proper acceleration relative to a Lorentz frame.

Of special interest here is not the Planck-like (exponential} term
which is of interest with regard 1o thermat effects of acceleration
through the vacuum, but rather the leading terms

a
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These indicate that an accelerated observer would see the background
ZPF spectrum augmented by a term proportional 10 the square of the
acceleration. Application of the principle of equivalence then

indicates that the additional spectral contribution seen in a frame



with acceleration a should also be seenin a nonaccelerated frame
with local gravitationa! field g produced by a mass m. Setting
g = - a = - Gm/r¢, we obtain

‘o) = oD &*m* 2
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We turn our attention now to the fields generated by the
ZPE-induced fluctuation motion fo determine whether the above
additional contribution predicted by the equivalence principle is in
fact generated. Considering, say, the x component of motion, we find
that an assumed el w! time dependence substituted into (20) yields
for the magnitude of any particular frequency component

o~ - ~ ~ P
Bz~ STEEC 2. HE e | @
r

where the over-tilde designates the magnitude of a frequency
component, and once again we have neglected the binding and
radiation-damping forces. This expression can then be combined
with the ZPF-field expressions (2) and (3), and the standard
oscillating dipole formulae (Stration (26))
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to yield expressions for the dipole fields generated by the fluctuation
motion; viz,
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where, with T a unit vector in the direction joining the dipole to the
fieid evaluation point,
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The energy density in the dipole-field distribution can be calculated
from (36) and (37) as
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Afler appropriate averaging (including averaging over solid angle
for a collection of randomly-oriented particle motions, and doubling
to take into account the contributions of the two independent degrees
of freedom in the model), the result reduces to a form which
contains three terms (Puthoff (7)). The first is proportional to

1/r2, and constitutes the radiation field associated with the
ZPF-driven dipole. As shown previously by Boyer {27), this
radiation just replaces that being absorbed from the background, on
a detailed-balance basis with regard to both frequency and angular
distribution, and therefore does not result in an incremental change
to the background. Of the two remaining (induction} field terms, a
1/r4 term predominates over a 1/8 term at large distances, and is
therefore the one of interest here. Designating this term by a prime,
we have
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which leads to an overall spectral density
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Since according to (24) there is a relationship between I" and the



particle mass m for ZPF-driven fluctuation motion, the above can
also be written

A / ) cs’ m‘l w (43)
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ZPF-induced motion therefore leads to the generation of an
electromagnetic field distribution in proximity 1o the mass that is
proportional to frequency times mass squared, divided by r4.
According to (32), moreover, a field of just this form is required
by the principle of equivalence. Egns. {32) and (43) can therefore
be equated to obtain the cutoff frequency (Shupe (28))

5
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This result accords with a prediction by Sakharov (14), made on
the basis of heuristic and dimensional arguments along general
relativistic lines, that ¢ c~l\lc’3th . In terms of the cutoff

frequency ¢ ¢, (44) can be inverted to yield the gravitational

constant G in the form of a second Sakharov prediction, hamely that
the gravitational constant should be determined by an expression of
the form G ~ ¢S [ &'dw; specifically, we obtain
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The main point, however, is that substitution of (44) into {29)
yields Newton's Law with no adjustable parameters required,
G e
(Fy = = —= (46)

Thus, the gravitational interaction takes its place alongside the
short-range van der Waals forces and the Casimir force as related
phenomena which emerge from the underlying dynamics of the
interaction of particles with the zero-point fluctuations of the
vacuum electromagnetic field.

A major benefit of the approach developed herein is that it provides
a basis for understanding various characteristics of the
gravitational interaction hitherto unexplained. The relative
weakness of the gravitational force under ordinary circumstances,
for example, is due to the fact that the gravitational constant G,
given by (45), reflects as the inverse square the high value of the
ZPF cutoff frequency; the attractive nature of the force is simply a
reflection of a property typical of van der Waals-type forces in
general; the unipolar or single-valuedness of the "charge" (mass)
can be traced to a positive-only zifterbewegung Kinetic energy
basis for the mass parameter; the fact that gravity cannot be
shielded is a consequence of the fact that high-frequency quantum
noise in general cannot be shielded, a factor which in other contexts




sets a lower limit on the detectability of electromagnetic signals. In
short, with a detailed theory in hand we are able to broaden our
understanding of the gravitational interaction under various
conditions, thereby enriching our knowledge of the mechanisms
which underlie the gravitational force.

CONCLLISION

These studies of the ground state of hydrogen as a ZPF-determined
state, and gravity as a ZPF force, indicate that the vacuum acts not
as a passive background, but as an active dynamic plenum in
determining the basic states of matter and their interaction, a
concept that transcends the usual interpretation of the role and
significance of the zero-point fluctuations of the background vacuum

electromagnetic field.
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APPENDIX

The two-particle interaction potential based on the radiation-field
van der Waals effect is given by (26), repeated here;

u:-l(;ﬂi‘_ﬁ_f:..z P -t 3R (A1)
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As seen, this expression can be factored into two parts; one with a
slow spatial variation, 1/®, and one with a rapid spatial variation
(on the order of the Planck wavelength), (sin ®/®)2. Of interest in
the gravitational interaction is not the rapidiy-varying component,
but rather an average value, averaged over a distance large
compared to the Planck wavelength. With the potential given by
(A1), the (normalized) force is given by

=8 PU _ »x 2 t-cn22R

(A2)

As particle separation changes by an amount AR, the corresponding
change in potential is given by
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Assuming integration over a ful cycie of the Planck variation so
that cos2(®y+ 961) = cos2 &;, and recognizing that AR « R, s0
that (®+ A®)3 = 0+ 3RAR, we find that (A3) simplifies to

3 xXALR | - con 2&;
AU = . : (Ad)
2 &4

The change in potential, integrated over @ cycle, is seen from (A4)
1o be sensitive to where in the cycle, 8j =2 ®., the integration was
begun. The average change in potential is therefore determined by
averaging over the range of possible initial starting points within

the cycie, namely, n S&;< n(n + 1), where n is an integer, n » 1.

By reference to standard Tables of Integrals {Dwight (29)) we find,
using (A4),
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Substitution of the limits of integration, with the recognition that
n » 1 implies that (n + 1)P = nP + pnP-1, then leads to
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But the term in brackets is recognized to be sin 2rn = 0, so that
{AU) becomes

A7}
_ x4 (L 8 (
< P U) - &1 ’
from which the average force can be calcu lated as
(A U) X
2y z - T - — AB
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The actual (unnormalized) force, F = - aU/oR, is recovered from
the above with the aid of the definition for R. foliowing (26),
yielding
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